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A Reynolds stress model that includes the recent models of the pressure transport term 
and the intermittency interaction term is applied to compute various free shear flows. The 
test computations reveal favorable improvements by the pressure transport model near the 
free-stream edges of the free shear flows. Inclusion of an intermittency interaction term 
in the dissipation rate equation also significantly enhances the prediction capability of the 
Reynolds stress model. In particular, predictions of the Reynolds stresses in the high- 
velocity side of a plane mixing layer and in the outer layer of a plane wake are remarkably 
improved. 
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Introduction 

Recent research efforts on the development of Reynolds stress 
models have focused mainly on refining the pressure-strain 
correlation model. Typical are those of Shih and Lumley (19X5). 
Haworth and Pope (1986). Fu. Launder. and Tselepidakrs 
(1987). Shih, Mansour, and Chen (19X7). and Speziale. Sarkar. 
and Gatski (1991, hereinafter referred to as SSG). With such 
long and extensive researchers, however. the current Reynolds 
stress models fail to predict simple fret shear flows. For 
example, when the model constants of the Reynolds stress 
equation are adjusted to yield correct spread rate of a 
two-dimensional (2-D) jet. then the Reynolds stress model 
underpredicts the spread rate of a 2-D far wake by as much as 
30% (see 19X&8 I Stanford Conference). 

One of the main reasons for this is the neglect of the pressure 
transport term in the current Reynolds stress equation. In fact, 
in a recent review paper. Bradshaw (1094) inferred that the 
pressure transport plays a significant role near the freestream 
edges of mixing layers and jets where pressure fluctuations. 
generated in the high-intensity region of the flow. drive an 
irrotational motion that extends outside the vjortical region. 
Quite recently, we have developed a new pressure transport 
model based on the Euler equation and both experimental and 
DNS data (Kim and Chung 1994). The model consists of a bulk 

Address reprint request to Professor M. K Chung, Department of 
Mechanical Engineering, KAIST. Yusong. Tailon. 305-701, South 
Korea. 

” Present address: Automotive Technology Laboratory, Institute 
for Advanced Engineering, 541, 5-ga Namdemun-no. Chung-gu, 
Seoul, 100-714, Korea. 

Received 30 August 1994; accepted 3 February 1995. 

Int. J. Heat and Fluid Flow 16. 194-201, 1995 
I‘ 1995 by Elsevier Science Inc 

655 Avenue of the Amertcas, New York, NY 10010 

convective transport term and a counter diffusive term. 
Another reason for the aforementioned failure is caused by 

the intermittent nature of turbulence in the free boundary 
regions. Cho and Chung (1992) found that, depending upon 
the entrainment direction, the local intermittency factor either 
increases or decreases, which results in variation of the eddy 
viscosrty. They proposed to modify the standard dissipation 
equation to include an intermittency invariant term F, which 
represents the entrainment of irrotational fluid into rotational 
one or v/ice versa by an interaction between the mean velocity 
gradient and the intermittency field. Their k-c-y model has 
proved most effective in obtaining correct spreading rates of 
vaarious kinds of free shear flows. 

The main objective of this study is to test the performance 
of our pressure transport model against free shear flows. 
Another objective is to extend Cho and Chung’s (1992) concept 
of the intermittency interaction to the Reynolds stress model. 
To choose a basic reference Renolds stress model for the 
present comparative study, two diffusion models of Hanjalic 
and Launder (1972, hereinafter referred to as HL) and Mellor 
and Herring (1973, hereinafter referred to as MH) and two 
pressure strain models of Launder, Reece, and Rodi (1975, 
hereinafter referred to as LRR) and SSG are first tested by 
computing simple free shear flows; i.e., a plane mixing layer, a 
plane jet, and a plane far wake. After this comparison test, the 
basic reference Reynolds stress model is composed of HL’s 
drtfusion model and SSG’s pressure strain model. Then the 
second and third sets arc constructed by successively 
introducing the intermittency model of Cho and Chung (1992) 
and the pressure transport model of Kim and Chung (1994) 
into the basic reference set. Such strategy makes it convenient 
to Isolate the improvement by each modification in the 
modeling accuracy. Computational results and some discussion 
about the roles of the pressure transport and the intermittency 
in the free shear flows are given in the final part of the paper. 
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Reynolds stress model 

Reynolds stress equation 

An exact equation describing the transport of the Reynolds 
stress uiuj for an isothermal incompressible flow can be written 
in the following form: 

where L’ and u denote the mean and fluctuating components of 
velocity, respectively, p represents the fluctuation in static 
pressure about the mean value, ,r~ is the density, 1’ is the 
viscosity, and Y denotes Cartesian space coordinates. 

The first term in the right-hand side is the shear productron 
term, which is exact at the second-order modeling level. The 
second term is the dissipation tensor, of which model IS 
decomposed into a deviator% part and an isotropic one 
(Lumley 1978): 

I:,, = - 
ill, iUj 

?\. ~~ = 21: d,, + $:6,, (7) 
i.u, i.x, 

The deviatoric part 2c:rli,, contributes to interchange the 
turbulent kinetic energy among components. but neither 
creates nor destroys the total energy. 

Pressure strain model 

The pressure gradient v,elocity correlation term In Equation I 
is generally separated into a devriatoric part a,, and a 
nondeviatoric part 7;, as follows: 

Because the deviatoric part is trace free: I.e., 0,, = 0. it IS 
interpreted as an intercomponent energy redistribution term m 
an incompressible flow. The second term Tj represents the 
spatial transport of the Reynolds stress by the pressure 
fluctuations. 

For the deviatoric part ma,, which has been conventionally 
named the pressure strain term, the following linear model of 
LRR, which includes the return-to-inotropy model of Rotta 
(1951). has been widely used in the past: 

Lumley (197X), this model violates the realizability of the 2-D 
turbulence state. In addition, there is the following nonlinear 
SSG model of aij, which satisfies the realizability condition of 
Pope (1985), 

a$, = C,,r:h,, + CIB(hikbjk - 1/311,6,j) + C,“S,, + C,Pbij 
+ C4~(hikSjk + hjkSi, - 2/36,jh,,S,,) 

+ C3h-(btkW,k + hjkMl;.k) (5) 

co = - 3.4; c, = 4.2; c, = 0.8 - 1.3rI,‘:2; c, = - 1.8; c, = 
1.25; Ci = 0.40; and Hh is the second invariant of hij defined 
as h,,hk,. 

Pressure transport model 

The expressions for the deviatoric part ai, and the 
nondeviatoric part Tj are not unique. There are three different 
methods of separation to identify @,j and Tj in current 
modeling approach (Groth 1991). A classical separation was 
giv*en by LRR as follows: 

T, = -( 7 
~ p (Ui&, + u,S,,) 1 (6) (‘I,, P 

Another one is the isotropic pressure transport model 
suggested by Lumley (1975) as follows: 

(7) 

Finally. the third separation was proposed by Mansour, Kim, 
and Moin (1988. hereinafter referred to as MKM) in the 
following way: 

where 

-, The anistotropy tensor b,, is defined as u,u,:Z~ - l436,,. and 
model constants are C, = 3.0 and C, = 0.4. According to 

(8) 

Because the model for @‘ir is usually formulated as a whole 
term based on its physical role as the intercomponent energy 
transfer. there is no difference between separation methods 
insofar as the model of Qij is trace free. Concerning the pressure 
transport. however, they lead to a decidedly different effect, 
which has been discussed by Speziale (1985). He investigated 
the justification of the first two approaches and concluded that 
only the second approach was consistent with the Navierr 
Stokes equation in the limit of 2-D turbulence subjected to a 
high rotation rate. 

Using the same analysis method of Speziale (1985). it can be 
found that MKM’s separation is also consistent with the 
NavierrStokes equation. Moreover, a physical realizability 
(Groth 1991) requires that there should be no net work done 
by the pressure, which otherwise generates energy in the 
component having zero turbulent energy in the 2-D turbulence. 
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Lumley’s separation does not satisfy this condition; whereas, 
both the classical and MKM’s separations meet this. Therefore, 
it is concluded the MKM’s is the only one that satisfies the 
above two conditions. 

Lumley (1978) modeled the pressure--veloctty correlation 
vector as -pU,/p = (l/5)u,u,uj. This model implies that the 
pressure transport counterdiffuses the Reynolds stresses against 
the diffusion by the triple velocity correlation in the Reynolds 
stress equation. 

Quite recently. we developed a new pressure transport model 
(Kim and Chung 1994). The pressure-velocity correlation 
vector has been modeled by adopting the concept of a 
convection velocity for the unsteady term in the invziscid. 
irrotational momentum equation. The final form is written as 
follows: 

- 
Pui ~ = C,[(U, ~ Li,,)u,U, + jlliuill,] (8) 
I, 

vvhere the convection velocity C:,, is defined as iu, it = 
-CT,, i14,/?u,. Furthermore, the convection velocity is esti- 
mated in terms of the intensity of turbulence. skewness, and 
the velocity scale of large-scale eddies by the following form: 

i: (  .Y, 

where I is the intensity of turbulence defined by I = 
JK/(C’,,,U,), and the model constants are C,, = 0.28 and 
C,, = 0.6. The term exp( -C,,/) in Equation 9, which expresses 
the degree of coherence of the large-scale structure, goes to 
zero, which indicates complete incoherence as the turbulence 
intensity becomes large; e.g.. when C’, approaches to zero 
When the frame of reference is moving at a constant velocity 
C;, then the velocity Uused in calculation of I must be replaced 
by I!J-U~ to secure the Galilian invariance of the scalar I. Detatls 
of the derivation is given in Kim and Chung (1994). Therefore, 
the new model of the pressure transport was suggested in the 
following form: 

with C, = 0.4. The two terms of the right-hand side were 
interpreted as a bulk convective transport term (rapid part) and 
a turbulent diffusion term (slow part). respectiv)cly. 

arise in the dissipation equation (Launder 1984). A basic form 
of the dissipation rate equation adopted from HL reads as 
follows: 

Investigating the computational anomaly problem between 
a jet and a wake. Cho and Chung (1992) found that a 
modification caused by the intermittency must be made to 
Equation 13. 

where 

(14) 

The quantity r proposed by Cho and Chung (1992) is the 
intermittency interaction invariant term, which represents the 
entrainment of irrotational fluid into rotational one or vice 
versa by an interaction between the mean velocity gradient and 
the intermittency field. The same arguments as I in Equation 
9 is necessary about the mean velocity L;, to guarantee the 
Galilian invariance of scalar F. The model constants C,, C,,, 
C,2 and C:14 are assigned with the conventional values found 
in the hterature: i.e., C, = O.lS(LRR). C,, = 1.44(LRR), 
C,] = 1.90(LRR). and C,, = 0.1 (Cho and Chung 1992). 

Intermittency equation 

To calculate F in Equation 14 an intermittency equation of 
Cho and Chung (1992) is adopted here. After replacing the 
eddy-viscosity-type diffusion model with the intermittency 
diffusion model suggested by Byggstoyl and Kollmann (1986) 
which is compatible with the Reynolds stress modeling, the 
intermittency equation takes the following form: 

Diffusion model 

The triple velocity correlation was approximated by the 
gradient-type diffusion model by HL as follows: 

m=-c,,K $=+~y+&-) 
c 

(11) 
C iu, I iv, 

where the constant C, is assigned the value 0.1 I. Meanwhile, 
Demuren and Sarkar (1993) recommended the diffusion model 
of MH written as follows: 

(15) 

Here, the zone-averaged quantittes in the model of Byggstoyl 
and Kollmann (1986) were approximated by the conventional 
time means in the present model. The model constant C, of 
0.16 is adopted from Byggstoyl and Kollmann, and the 
remaining constants C,, , C,,, and Cq3 are assigned 
the values 1.60, 0.15, and 0.16, respectively, as in Cho and 
Chung (1992). 

with C, = 2/X,,. as a counterpart of the SSG’s pressure 
strain model in their computation of a channel flow,. As was 
pointed out by Schwarr and Bradshaw (1994). the MH model 
is an isotropic version of the HL model in Equation 1 I. 

Dissipation rate equation 

Because nearly all terms in the exact dissipation rate equaiton 
must be modeled, the main modeling error has been known to 

Applications to turbulent free shear flows 

Computational method 

The Reynolds stress models described in the following section 
are applied to compute v*arious 2-D free shear flows; namely, 
a plane mixing layer. a plane jet, and a plane far wake. For 
these thin boundary-layer-type flows at high Reynolds 
numbers, the stream-wise momentum equation and the 

196 Int. J. Heat and FluId Flow, Vol. 16, No. 3, June 1995 



Pressure transport in turbulent free flows: S. K. Kim and M. K. Chung 

continuity equation are as follows: 

(16) 

(17) 

The upwind finite-difference procedure was used to solve 
the system of the governing equations (e.g.. Patankar 1980). 
Calculations of the flows reported below were obtained by 
using 400 cross-stream nodes and a very small marching step 
to secure the streamwise spatial resolution. To demonstrate the 
numerical solution accuracy, numerical errors depending upon 
the number of grids and the downstream increment are 
presented in Figure I. The results were obtained in computing 
a fully developed plane jet flow with stagnant surroundings 
using the LRR’s Reynolds stress model. From Figure la. the 
calculated Reynolds shear stress profiles with 200 and 400 
cross-stream nodes are nearly the same. Based upon Figure lb, 
the streamwise step size Ax was taken as 2:/o of the local jet 
half-width. The same procedure to guarantee the numerical 
accuracy was processed prior to the computation of each Row. 
The initial boundary layers for all flows were assumed to be in 
a fully developed turbulent state. having the initial profiles 
similar to that in Klebanoffs experiment (Hinze 1975). The 
initial dissipation rate profiles were estimated by assuming a 
local equilibrium. 

---lo0 nodes 
~ 200 nodes 
--- 400 nodes 

0.00 v 
0.0 1.0 2.0 3.0 

Y/6 

b o”25 
dy,,z __ 0.08 
dx 

0 Present test 

0.04 

t I 

o.oo L 0.0 0.1 0.2 0.3 0.4 0.5 
Ax/yvz 

Figure 1 Numerical solutron errors In calculatrng a turbulent 
plane jet with the model of Launder, Reece, and Rodi (1975): a. 
Variation of calculated Reynolds stress profiles with the number of 
cross-stream nodes; b. Variation of calculated spreadrng rates with 
streamwise step size 
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Model set alternatives 

First, two diffusion models, Equations 1 I and 12, and the 
pressure strain models, Equations 4 and 5. have been tested in 
free shear flows in order to construct a best basic reference set 
of the Reynolds stress model. The conventional LRR’s 
Reynolds stress model. which includes the HL’s diffusion model 
and LRR’s pressure strain model, is compared with the MSS 
model (MH’s diffusion model and SSG’s pressure strain model) 
and the HSS model (HL’s diffusion model and SSG’s pressure 
strain model). Although LRR’s pressure strain model is 
mcompatible with the present pressure transport model in the 
sense that it does not satisfy the realizability condition, LRR’s 
model is included in this comparison because of its popularity. 
Figures 2a, b, and c show the comparisons of the model 
predictions with experimental Reynolds stress distributions in 
a plane mixing layer, a plane jet and a plane far wake. Two 
kinds of HSS model with different model constants are 
presented here. The HSSI model has the same C,, and C,, as 
those of LRR. but the HSS2 model has constants modified to 
adjust the level of Reynolds shear stress in a plane mixing layer. 
Table I shows the construction of various Reynolds stress 
model sets. It is clearly seen that the MH’s diffusion model is 
not compatible for the computation of free shear flows. From 
Figure 2c, all models are found to underpredict severely the 
level of the Reynolds shear stress of a plane far wake. 

In the following sections, the computations are performed 
with four different sets of models. The first and second sets are 
LRR and HSS?, both of which have almost the same Reynolds 
shear stresses, which are better than those of the remaining 
ones. However. because HSS2 adopted more recent pressure 
strain model of SSG. it is selected as the basic Reynolds stress 
model to formulate the model sets PM1 and PM2, which 
follow. The difference between the results of LRR and HSS2 
will isolate the performance of the pressure strain models of 
LRR and SSG. The third one is constructed by replacing the 
dissipation rate equation of LRR with Equation (14). The 
intcrmittency Equation I5 is included here, of course. This 
model set is identified by PM I. As a last model set, the pressure 
transport model of Kim and Chung (1994) is included in the 
model set PM 1. For this model set PM2, the model constant 
C, in Equation (11) should be modified, because the 
conventional diffusion models such as Equation 11 had been 
adjusted without the pressure transport term; whereas, the 
present pressure transport model includes the same third-order 
moment as the counter diffusion term as appeared in Equation 
(10). Considering this counterdiffusion effect of the pressure 
transport. the constant C, was determined to be 0.13 instead 
of LRR’s value of 0.1 1. The computational results by this third 
model set PM2 will provide a concrete ground to judge the 
justification of the pressure transport model. 

Note that all terms in the reference Reynolds stress equation 
and the dissipation equatin are retained in PM 1 and PM2: the 
streamwise diffusion terms and the secondary production terms 
which are related to the strcamwise gradient are all included. 
The secondary source terms in the Reynolds stress equation 
and the dissipation equation have non-negligible effect in 
computation of free shear flows (Launder and Morse 1979; 
Hanjalic and Launder 1980). 

In the following figures. because the predicted profiles by 
both models LRR and HSS2 are more or less the same, the 
profiles obtained by HSS? are presented for clarity of 
comparison to those of PM1 and PM2. 

Plane mixing layer 

In Figures 3a-c. the computational results for the plane mixing 
layer with the velocity ratio of R = 0.6, are compared with 
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a 

57 
2 uo 

--- LRR 
--- MSS 

C 0.06 

F 

0.00 c 
1 

1.c 

LRR 
--- MSS 

0 O0 ----- HSSl 
0 ___ HSS2 

0 

available experimental data. Here, R is the ratio of the lower 
freestream speed U, to the higher one U,. The plane mixing 
layer is experimentally generated with two parallel freestreams 
with a separating flat-plate between them. The initial 
development zone of a plane jet is one of the plane mixing layer 
flows. In these figures, U, represents the velocity difference, 
U, - U,, the shear layer thickness 6 is defined by the distance 
IJJ~,~ - P~,~(, and y,,,, y,,, and y0.9 indicate cross-stream 
locations where U - U, is 10%. 50%, and 90% of U,, 
respectively. 

The predictions are compared in Figures 3a-c together with 
the data of Bell and Metha (1990). For the mean flow profile, 
the inclusion of the intermittency term is most critical for the 

0.02 

0.01 

0.00 
0.0 1.0 2.0 3.0 

Y/6 

Figure 2 Predicted Reynolds shear stresses and the experiments 
for a plane mixing layer with R = 0.6, the self-preserving region of a 
plane jet with stagnant surroundings and a plane far wake: a. Plane 
mixing layer with R = 0.6 (circles denote experimental data of Bell 
and Metha 1990); b. Self-preserving region of a plane jet with 
stagnant surroundings (circles denote experimental data of 
Heskestad 1965); c. Plane far wake (circles denote experimental 
data of Wygnanski, Champagne, and Marasli 1986) 

improvement in the prediction. On comparing the various 
model predictions for the Reynolds stresses, it is apparent that 
both the intermittency and the pressure transport models 
contribute favorably to the improvement of the prediction 
accuracy. Especially, in the high velocity side, all the Reynolds 
shear and normal stresses are significantly better predicted by 
including both flow mechanisms in the computations. 
However, the Reynolds normal stresses are somewhat 
underestimated by both PM1 and PM2 model sets in the low 
velocity side. In the 1980-81 Stanford Conference, Birch 
(1982) recommended a spreading rate relation of dL/dx = 
0.115( 1 - R)/(l + R) after surveying experimental data. Here, 
L is the distance between the points where U = ,/66(U, - 

Table 1 Comparative model sets 
.__~ --~ ~~-~ ~__ - 

Reynolds stress equation 
__- 

Model set Diffusion Pressure strain Pressure transport 

Disspiation equation 

C 62 lntermittency equation 

LRR HL LRR - 
MSS MH SSG - 

HSSl HL SSG - 
HSS2 HL SSG - 
PM1 HL SSG - 

PM2 
(C, 2.13) 

SSG Kim and 
Chung (1994) 

1.45 1.90 
1.45 1.90 
1.45 1.90 
1.40 1.92 
1.40 1.92 

1.40 1.92 

- 
- 
- 
- 

Cho and 
Chung (1992) 

Cho and 
Chung (1992) 

198 Int. J. Heat and Fluid Flow, Vol. 16, No. 3, June 1995 



Pressure transport m turbulent free flows: S. K. Kim and M. K. Chung 

a 

--- HSS2 
----- PM, 

~ PM2 

_J 
1.2 

b 
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~-- HSS2 
--~-~ PM, 

--- HSS2 
----- PM, 
__ PM2 

(Y-Yo.s)h 

Figure 3 Compartsons of predrction with the experrments for a 
plane mixrng layer with R = 0.6 (circles denote experrmental data of 
bell and Metha 1990)’ a. Streamwise mean velocrty profrles; b 
Reynolds shear stress profiles; c. Profrles of the normal components 
of the Reynolds stresses 

U,) + U,., and C’ = JO.l( li’, - c’,) + I,;,.. According to this 
relation, dL/dx is 0.029 in the case of R = 0.6. LRR, HSSZ. and 
PMI predict the spreading rate to be 0.027. 0.027. and 0.031. 
respectively. However, the final model PM2 yields the correct 
rate of 0.029. 

Figure 4 shows the turbulent kinetic energy balanfe budgets 
calculated by PM2 and DNS data of Rogers and Moser (1994). 

1.0 

.E 
6 0.5 

0.0 

z 
0 -0.5 

_I - 

-1.0 

.E 
:: 0.5 

0.0 

: 
0 -0.5 

_I 

-1.0. , - I..? -0.6 0.0 0.6 l., 7 

(Y -Yo.5)/6 

Frgure 4 the comparison of turbulent kinetic energy budgets for 
a plane mrxing layer; a. Prediction by the model set PM2; b. DNS 
data of Rogers and Moser 1994 

Each term presented in this figure is the normalized one by the 
cube of the characteristic velocity scale I;,, divided by the 
length scale 6, and multiplied by 100. Both the production and 
the dissipation terms are the main balancing quantities in the 
turbulent kinetic energy. It is seen that the contribution of the 
pressure transport term evaluated by the present model is 
somewhat small, as compared to the DNS data. It is noted that 
the computed diffusion term by the triple velocity correlation 
is reasonably well compared with DNS data in Figure 4b. 

Plane jet 

The computational results for a plane jet into a stagnant 
surroundings are compared with the hot-wire data of 
Heskestad (1965) in Figures 5a-c. The shear layer thickness 6 
defined by the distance yO,s. and U, is the centerline mean 
velocity. The predicted mean velocity profile by PM2 agrees 
best with the experimental data in Figure 5a. For the Reynolds 
shear stress profiles in Figure 5b, both models PM1 and PM2 
yield good results. However, for the Reynolds normal stresses, 
HSSZ shows a little better prediction than PM1 and PM2. For 
the spreading rate, d6:dx, Rodi (1975) suggested a value 0.1 I, 
but Haworth and Pope (1987) recommended a value of 0.10. 

PM I and PM2 yielded the spreading rate as 0.101, but LRR 
and HSS2 overpredicted it as 0.114. The better results of PM 1 
over HSS2 are attributable to the intermittency model, which 
increases the dissipation, and thus, decreases the Reynolds 
stresses. The notable difference of the results between PM 1 and 
PM2 appearing in the free boundary region especially for the 
Reynolds shear stress is caused by the pressure transport term. 

Plane far wake 

Figures 6a-c represent the computational results for a plane far 
wake, as compared to experimental data. It is well known (see 
Wygnanski, Champagne, and Marasli (1986) that the flow field 
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I ;\l;i 
o,of , , , , / , ; ‘-y., 1 

0.0 i .o 20 30 

Y/E 

b 

C , 

figure 5 Comparisons of predIctIons with the experiments for 
the self-preserving region of a plane jet with stagnant surroundings 
(circles denote expenmental data of Hessskestad 1965): a 
Streamwise mean velocity profiles; b Reynolds shear stress profiles, 
c. Proflles of the normal components of the Reynolds stresses 

in the plane far wake depends largely upon the wake 
generator. Because reliable experimental data set for the plane 
far wake behind a flat plate are scarce. a data set for the plant 
far wake behind a symmetric airfoil of Wygnanski, Champagne, 
and Marasli was chosen as the comparative data. Here, U, 
is the freestream velocity, c’, is the defect velocity defined by 
the difference, U, - c’. c’,, denotes its center-line value. and 
the shear layer thickness ci is the distance y. 5. The calculated 
mean defect velocity profile with HSS? m Figure 6a shows very 
poor agreement with the data near the free-stream edge. As 
was expected, PM1 makes much improvement in that region 
where the intermittency model plays an important role. PM2 

gives a nearly identical profile with the mean defect velocity 
data. Apparently, the improvement is made by the pressure 
transport model. 

The spreading rates d(0.5C7,~o,5/l,,/dx defined by Rodi 
( 1975) were calculated to be 0.070, 0.071, 0.107, and 0.100 with 
LRR, HSSZ. PMI, and PM2, respectively. Comparing these 
values with the value of 0.098, which was recommended at the 
Stanford conference in 1982, LRR and HSS2 yield significantly 
too low values, and only the model PM2 produces the nearly 
exact spreading rate. The experimental decay rate of the 
centerline defect velocity, U,x/( C’ x 0), defined by Wygnanski, 
Champagne, and Marasli (1986). varies in a range 1.56-1.71 
when the wake generator is flat plates or symmetric airfoils. 

1.0 

Ud 
UdO 

--- HSS2 
-~~-- PM, 

__ PM2 

o,o / I I I I 8cl ’ 
00 1.0 

Y/6 2.0 
3.0 

b 0.06 

,*-\ 
.’ 

uv -- 

l& 

HSS2 
PM1 
PM2 

Figure 6 Comparisons of predlctions with the experiments for a 
plane far wake (circles denote experimental data of Wygnanski, 
Champagne, and Marasli 1986): a. Streamwise mean defect 
velocity profiles; b. Reynolds shear stress profiles; c. Profile of the 
streamwise normal stress 
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Here, U stands for the momentum thickness. Although PMI 
and PM2 predict the decay rate as 1 S I amd 1.58, respectively. 
both LRR and HSS2 overpredict it by as high as 1.82. Such 
an improvement by PM1 and PM2 is obtained mainly from 
the intermittency interaction model. In Figures 6b and c. the 
Reynolds shear and normal stresses are predicted too low by 
about 20-40X by LRR and HSS2 models. The inclusion of the 
intermittency model remarkably improves the prediction 
accuracy for the Reynolds shear stress. In the central and outer 
regions, the improvement by the pressure transport model for 
the Reynolds shear stress in Figure 6b is qi!e apparent. 
However. the stream-wise turbulent intensity u tn Ftgure 6c 
is a little overestimated by the present models. although it is 
better predicted in the outer region by the inclusion of the 
intermittency term and the pressure term. More data for ;” 
and 2 are needed to evaluate the model performance in the 
central region. 

Concluding remarks 

The pressure transport model of Kim and Chung 1994 and the 
intermittency model of Cho and Chung (1992) have been tested 
against various free shear flows. The conventional Reynolds 
stress model of Launder, Reece. and Rodi (1975) was modified 
to construct three different sets of Reynolds stress closure. The 
variants were made by including the pressure strain model of 
Speziale. Sarkar, and Gatski (1991). the intermitency interac- 
tion model and the pressure transport model into the basic 
form of LRR model. The SSG’s pressure strain model affected 
the computational results; however. any merit of this model 
over the LRR model was not detected in these computations. 

It was found that the intermittency interaction model of Cho 
and Chung (1992) contribute greatly to the improvement of the 
predictions of all flows considered here. The favorable role of 
the intermittency in remedying the plane jet/plane wake 
anomaly problem that has been shown by Cho and Chung 
(1992) at the level of rC-6 model was also confirmed at the 
Reynolds stress closure level. 

Fairly good role of the present pressure transport model in 
improvmg the predictions were clearly seen in the freestream 
edges of all free shear flows treated here. specifically. the 
increase in the Reynolds stresses by the dominant bulk 
convective pressure transport much Improved the prediction 
accuracy in the high-velocity side of the plant mixing layer and 
the outer layer of the plane far wake. Therefore. it can be 
concluded that the combined role of the intermittency 
interaction and the pressure transport is very important in 
computing the free shear flows. 

However. it should be noted that the present final model set 
PM2, which includes both the intertmttency and the pressure 
transport models, do not predict well the Reynolds normal 
stresses, whereas it improves the Reynolds shear stress 
remarkably. This suggests that further improvements are 
needed in the model of the intercomponent energy redistribu- 
tion term by the pressure fluctuations. 
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